Skip to main content

95.js

/** ------------------------------------------------------------------------------
*
* 95. Unique Binary Search Trees II
* Topics: Binary Tree, DP
* https://leetcode.com/problems/unique-binary-search-trees-ii/description/
*
------------------------------------------------------------------------------ */
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number} n
* @return {TreeNode[]}
*/
var generateTrees = function (n) {
function allPossibleBST(start, end, memo) {
let res = []
if (start > end) {
res.push(null)
return res
}

let key = start + "," + end
if (memo[key] != undefined) return memo[key]

for (let i = start; i <= end; i++) {
let leftPossibleBST = allPossibleBST(start, i - 1, memo)
let rightPossibleBST = allPossibleBST(i + 1, end, memo)
for (let j = 0; j < leftPossibleBST.length; j++) {
for (let k = 0; k < rightPossibleBST.length; k++) {
let root = new TreeNode(i, leftPossibleBST[j], rightPossibleBST[k])
res.push(root)
}
}
}
memo[key] = res
return res
}

let memo = {}
return allPossibleBST(1, n, memo)
}

/**
* @param {number} n
* @return {TreeNode[]}
*/
var generateTrees = function (n) {
if (n === 0) {
return []
}

const memo = new Map()

function generateTreesHelper(start, end) {
if (memo.has(`${start}-${end}`)) {
return memo.get(`${start}-${end}`)
}

const trees = []
if (start > end) {
trees.push(null)
return trees
}

for (let rootVal = start; rootVal <= end; rootVal++) {
const leftTrees = generateTreesHelper(start, rootVal - 1)
const rightTrees = generateTreesHelper(rootVal + 1, end)

for (const leftTree of leftTrees) {
for (const rightTree of rightTrees) {
const root = new TreeNode(rootVal)
root.left = leftTree
root.right = rightTree
trees.push(root)
}
}
}

memo.set(`${start}-${end}`, trees)
return trees
}

return generateTreesHelper(1, n)
}